Artículos Regulares
Rev. LatinAm. Metal. Mat. 2010, 30(2): 181-189
POLVOS NANOMETRICOS DE ZIRCONIA, POR SINTESIS HIDROTERMICA MICRO-ONDA
Online: 30-07-2010

Abstract
Se llevó a cabo la síntesis de polvos nanométricos a partir de suspensiones coloidales estables de zirconia. Se empleó el novedoso método de síntesis hidrotérmica micro-onda y se estudió su efecto sobre las características estructurales de los polvos obtenidos, así como también su aptitud a la sinterización. Adicionalmente, se evaluaron, tanto el efecto del dopaje con ytria y ceria, sobre los precursores de zirconia, como las variables asociadas al tratamiento hidrotérmico. En los resultados obtenidos con esta metodología se observaron nanopolvos con tamaños del orden de los 100nm y la presencia de fases cristalinas estables, tal como lo refiere la literatura. Se concluye que la técnica de síntesis hidrotérmica micro-onda podría encontrar aplicación para el procesamiento de polvos cerámicos nanométricos de alta pureza.
Stable colloidal suspensions of zirconia were used to synthesize nanometric powders through a micro-wave hydrothermal route. The effect of this novel method upon structural features and capability to sintering was evaluated. In addition, doping of zirconia with itria and ceria was performed and treatment variables were studied. Results showed nanometric powders in the order of 100nm. Also, XRD analysis indicated the presence of crystalline phases as those reported by the literature. It is concluded that this novel technique is promising for future developments and processing of high-purity nanometric ceramic powders.
Stable colloidal suspensions of zirconia were used to synthesize nanometric powders through a micro-wave hydrothermal route. The effect of this novel method upon structural features and capability to sintering was evaluated. In addition, doping of zirconia with itria and ceria was performed and treatment variables were studied. Results showed nanometric powders in the order of 100nm. Also, XRD analysis indicated the presence of crystalline phases as those reported by the literature. It is concluded that this novel technique is promising for future developments and processing of high-purity nanometric ceramic powders.